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Three Phase Power
Introduction

Basic Assumptions
•Three AC voltage sources

•Voltages Displaced in time

•Each sinusoidal

•Identical in Amplitude

Van

Vcn

Vbn

Phase A

Phase B

Phase C
Neutral

(Ground)



AC Theory – Sine Wave
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AC Theory - Phase
Sine Wave
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Three Phase Theory
Single Phase - Voltage Plot

ONE CYCLE

Van



-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0 120 240 360 480

A
M

PL
IT

U
D

E

PHASE ANGLE

Three Phase Theory
Two Phases - Voltage Plot
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Three Phase Power
At the Generator

Three voltage vectors 
each separated by 
120°.

Peak voltages 
essentially equal.

Most of what makes three phase systems seem complex is what we do to 
this simple picture in the delivery system and loads.

VcnVan Vbn



Three Phase Power
Basic Concept – Phase Rotation
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VanVbnVcnPhase Rotation:
The order in which the 
phases reach peak 
voltage.

There are only two 
possible sequences:

A-B-C  (previous slide)

C-B-A  (this slide)

Phase rotation is important because the direction of rotation of a three 
phase motor is determined by the phase order.
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Three Phase Theory
Phasors and Vector Notation

• Phasors are a graphical means of representing the 
amplitude and phase relationships of voltages and 
currents.

V = sin(θ)
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Three Phase Power
Phasors and Vector Notation

• As stated in the Handbook of Electricity Metering, by 
common consent, counterclockwise phase rotation has 
been chosen for general use in phasor diagrams.
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V = V0sin(θ-120)
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Three Phase Power
Phasors and Vector Notation

• The phasor diagram for a simple 3-phase system has 
three voltage phasors equally spaced at 120° intervals.

• Going clockwise the order is A – B – C.
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Three Phase Theory
Symbols and Conventions

• Systems formed by 
interconnecting 
secondaries of 3 single 
phase transformers.

• Generally primaries are not 
show unless details of 
actual transformer are 
being discussed.

A

B

C

N

Ia

Ib

Ic



Three Phase Theory
Symbols and Conventions

• Often even the coils are 
not shown but are 
replaced by simple line 
drawings A

B

C

N

Ia

Ib

Ic



Symbols and Conventions
Labeling

• Voltages are generally labeled Va, Vb, Vc, Vn for the 
three phases and neutral

• This can be confusing in complex cases.
• The recommended approach is to use two subscripts so 

the two points between which the voltage is measured 
are unambiguous.

BC

A

N Vca

Vbn

Van

Vcn

Vab

Vbc

Vab means voltage at “a” as 
measured relative to “b”.



Three Phase Transformers
Delta vs Wye
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Three Phase Transformers
Delta vs Wye

• Delta is commonly used for power transmission as it only 
requires three lines

• Delta is better for a balanced load like a motor and has 
greater reliability if a winding failure occurs

• Wye offers two voltages – line to neutral and line to line
• Wye is used when a single phase load is required



3 Phase, 4-Wire  “Y” Service
0° = Unity Power Factor

• Three 
Voltage 
Phasors

• 120° Apart
• Three 

Current 
Phasors

• Aligned with 
Voltage at 
PF=1



2 Phase, 3-Wire  “Y” Service
“Network Connection”

Single phase variant of the service.

Two voltage sources with their returns connected to a common point.

Provides 208 rather than 240 volts across “high side” wires.

B
C

N

A
208

120

120

Source
B

C

N

Ia

Ib
Load

A

ANAB VV 3=



2 Phase, 3-Wire  “Network” Service

• Two Voltage 
Phasors

• 120° Apart
• Two Current 

Phasors
• Aligned with 

Voltage at 
PF=1



3 Phase, 3-Wire  Delta Service
Common service type for industrial customers.  This service has NO 
neutral.

•Voltages normally measured relative to phase B.

•Voltage and current vectors do not align.

•Service is provided even when a phase is grounded.

Source

BC

Ia

Ib

Ic
Load

A

BC

A

240

240

240



3 Phase, 3-Wire  Delta Service
 Resistive Loads

• Two Voltage 
Phasors

• 60° Apart
• Two Current 

Phasors
• For a 

resistive 
load one 
current 
leads by 30° 
while the 
other lags 
by 30°



3 Phase, 3-Wire  Delta Service
Understanding the Diagram
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3 Phase, 3-Wire  Delta Service
Understanding the Diagram

Ia
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Iab

Icb

Ic
Ica
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3 Phase, 4-Wire  Delta Service
Common service type for industrial customers.  Provides a residential 
like 120/240 service (lighting service) single phase 208 (high side) and 
even 3 phase 240 V.

•Voltage phasors form a “T” 90° apart

•Currents are at 120° spacing

•In 120/120/208 form only the “hot” (208) leg has its voltage and 
current vectors aligned.

Source
BC Ib

Ic
Load

IaA

N



3 Phase, 4-Wire  Delta Service
 Resistive Load

• Three 
Voltage 
Phasors

• 90° Apart
• Three 

Current 
Phasors

• 120° apart



AC Theory – Resistive Load
Sine Wave
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AC RVrms

Irms

Resistors are measured in Ohms.  When an AC voltage is applied to a resistor, the 
current is in phase. A resistive load is considered a “linear” load because when the 
voltage is sinusoidal the current is also sinusoidal.



AC Theory – Inductive Load
Sine Wave
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Inductors are measured in Henries.  When an AC voltage is applied to an inductor, 
the current is 90 degrees out of phase.  We say the current “lags” the voltage.  A 
inductive load is considered a “linear” load because when the voltage is sinusoidal 
the current is also sinusoidal.

AC LVrms

Irms



AC Theory – Capacitive Load

AC CVrms

Irms

Capacitors are measured in Farads.  When an AC voltage is applied to a capacitor, 
the current is 90 degrees out of phase.  We say the current “leads” the voltage.  A 
capacitive load is considered a “linear” load because when the voltage is 
sinusoidal the current is sinusoidal.

Sine Wave
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AC Theory – Power

• Power is defined as     P = VI
• Since the voltage and current at every point in 

time for an AC signal is different, we have to 
distinguish between instantaneous power and 
average power. Generally when we say “power” 
we mean average power.

• Average power is only defined over an integral 
number of cycles.



Time Out for Trig
(Right Triangles)

c
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a
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The Right Triangle:

The Pythagorean theory

 c2 = a2 + b2

c
bSin =)(q
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AC Theory – Power Triangle
(Sinusoidal Waveforms)

If V = Sin(ωt) and I = Sin(ωt - θ)  (the load is linear)
then
 Active Power = VICos(θ) Watts
 Reactive Power = VISin(θ) VARs
 Apparent Power = VI  VA
 Power Factor = Active/Apparent = Cos(θ)

Watts

VA
R
s

VA



AC Theory
Instantaneous Power
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P = 11520 Watts



AC Theory
Instantaneous Power

)2(2120 ftSinV p= )902(296 -= ftSinI p )2(11520 ftSinP p-=

For an inductive load:

P = 0 Watts
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AC Theory
 Instantaneous Power

)2(2120 ftSinV p= )902(296 += ftSinI p )2(11520 ftSinP p=

For a capacitive load:

P = 0 Watts

)2()90()(2 tVISintSintVISinvip www =+==

Sine Wave
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AC Theory – Complex Circuits
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AC Theory – Instantaneous Power
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AC Theory – Instantaneous Power
• From IEEE1459 instantaneous power can be 

written in several forms:
Sine Wave
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Three Phase Power
Blondel’s Theorem

If energy be supplied to any system of conductors 
through N wires, the total power in the system is 
given by the algebraic sum of the readings of N 
wattmeters, so arranged that each of the N wires 
contains one current coil, the corresponding voltage 
coil being connected between that wire and some 
common point.  If this common point is on one of the 
N wires, the measurement may be made by the use 
of N-1 wattmeters.



Three Phase Power
Blondel’s Theorem

• Simply – We can measure the power in a N wire system 
by measuring the power in N-1 conductors.

• For example, in a 4-wire, 3-phase system we need to 
measure the power in 3 circuits.



Three Phase Power
Blondel’s Theorem

• If a meter installation meets Blondel’s 
Theorem then we will get accurate power 
measurements under all circumstances.

• If a metering system does not meet 
Blondel’s Theorem then we will only get 
accurate measurements if certain 
assumptions are met.



Blondel’s Theorem

• Three wires
• Two voltage measurements with one 

side common to Line 2
• Current measurements on lines 1 & 3.

This satisfies Blondel’s Theorem.



Blondel’s Theorem

• Four wires
• Two voltage measurements to neutral
• Current measurements on lines 1 & 3. 

How about line 2?
This DOES NOT satisfy Blondel’s 

Theorem.



Blondel’s Theorem

• In the previous example:
§ What are the “ASSUMPTIONS”?
§ When do we get errors?



Blondel’s Theorem



Blondel’s Theorem

• Phase B power would be:  
§ P = VbIbCosθ

• But we aren’t measuring Vb 
• What we are measuring is:

§ IbVaCos(60- θ) + IbVcCos(60+ θ)
• Cos(α + β) = Cos(α)Cos(β) - Sin(α)Sin(β)
• Cos(α - β) = Cos(α)Cos(β) + Sin(α)Sin(β)
• So



Blondel’s Theorem

• Pb = IbVaCos(60- θ) + IbVcCos(60+ θ)
• Applying the trig identity

§ IbVa(Cos(60)Cos(θ) + Sin(60)Sin(θ)) 
  IbVc (Cos(60)Cos(θ) - Sin(60)Sin(θ)) 
§ Ib(Va+Vc)0.5Cos(θ) + Ib(Vc-Va) 0.866Sin(θ) 

• Assuming
§ Assume Vb = Va = Vc
§ And, they are exactly 120° apart 

• Pb = Ib(2Vb)(0.5Cosθ) = IbVbCosθ



Blondel’s Theorem

• If Va ≠ Vb ≠ Vc then the error is
• %Error = 
     -Ib{(Va+Vc)/(2Vb) - (Va-Vc) 0.866Sin(θ)/(VbCos(θ))

How big is this in reality?  If
Va=117, Vb=120, Vc=119, PF=1 then E=-1.67%
Va=117, Vb=116, Vc=119, PF=.866 then E=-1.67%



AC Theory – Power

• Power is defined as     P = VI
• Since the voltage and current at every point in 

time for an AC signal is different, we have to 
distinguish between instantaneous power and 
average power. Generally when we say “power” 
we mean average power.

• Average power is only defined over an integer 
number of cycles.



Harmonics
Curse of the Modern World

• Every thing discussed so far was based on “Linear” loads.
§ For linear loads the current is always a simple sine wave. 

Everything we have discussed is true.
• For nearly a century after AC power was in use ALL loads 

were linear.
• Today, many loads are NON-LINEAR.



Harmonic Load Waveform
Six Pole Motor
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Eq.# Quantity Phase A

1 V(rms) (Direct Sum) 100

2 I(rms) (Direct Sum) 108

3 V(rms) (Fourier) 100

4 I(rms) (Fourier) 108

5 Pa = (∫ V(t)I(t)dt) 10000

6 Pb = ½∑VnIncos(θ) 10000

7 Q = ½∑VnInsin(θ) 0.000

8 Sa = Sqrt(P^2 +Q^2) 10000

9 Sb = Vrms*Irms(DS) 10833

10 Sc = Vrms*Irms(F) 10833

13 PF = Pa/Sa 1.000

14 PF = Pb/Sb 0.923

15 PF = Pb/Sc 0.923

V = 100Sin(ωt) I = 100Sin(ωt) + 42Sin(5 ωt)



Harmonic Load Waveform
Eq.# Quantity Phase A

1 V(rms) (Direct Sum) 100

2 I(rms) (Direct Sum) 108

3 V(rms) (Fourier) 100

4 I(rms) (Fourier) 108

5 Pa = (∫ V(t)I(t)dt) 10000

6 Pb = ½∑VnIncos(θ) 10000

7 Q = ½∑VnInsin(θ) 0.000

8 Sa = Sqrt(P^2 +Q^2) 10000

9 Sb = Vrms*Irms(DS) 10833

10 Sc = Vrms*Irms(F) 10833

13 PF = Pa/Sa 1.000

14 PF = Pb/Sb 0.923

15 PF = Pb/Sc 0.923

• Important things to note:
§ Because the voltage is NOT 

distorted, the harmonic in the 
current does not contribute to 
active power.

§ It does contribute to the 
Apparent power.

§ Does the Power Triangle hold

§ There is considerable 
disagreement about the 
definition of various power 
quantities when harmonics are 
present.

V = 100Sin(ωt) I = 100Sin(ωt) + 42Sin(5 ωt)

22? QPS +=



3 Phase Power Measurement

• We have discussed how to measure and 
view power quantities (W, VARs, VA) in a 
single phase case.

• How do we combine them in a multi-phase 
system?

• Two common approaches:
§ Arithmetic
§ Vectorial



3 Phase Power Measurement
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3 Phase Power Measurement

• VAR and VA calculations can lead to some 
strange results:
§ If we define

PH W Q VA

A 100 0 100

B 120 55 132

C 120 -55 132

Arithmetic VA 364

Vector VA 340 Arithmetic VA V S I

Vector VA SPQ

22 )()( CBACBA QQQWWWVA +++++=



3 Phase Power Measurement

Arithmetic Calculation - Form 6 – 4 Wire Y Site
Voltages and Currents Aligned at 0°



3 Phase Power Measurement

Vector Calculation - Form 6 – 4 Wire Y Site
Voltages and Currents Aligned at 0°



3 Phase Power Measurement

Arithmetic Calculation - Form 6 – 4 Wire Y Site
Currents All shifted by 30°



3 Phase Power Measurement

Vector Calculation - Form 6 – 4 Wire Y Site
Currents All shifted by 30°



Actual Field Test Case #1:
Lots of Clues!



Actual Field Test Case #1:
Lots of Clues!

Phase B & C reversed!



Actual Field Test Case #2:

Registration OK!

Ib opposite to Ia & Ic

Ib = Ia + Ic



Actual Field Test Case #4:

What is the problem?

There is no problem!
3-Wire Delta load

On a 4-Wire Wye service.



Questions? Comments?
Want a copy of this 
presentation?
Go to
powermetrix.com/presentations/

Thank you for your time!


